Share Email Print

Proceedings Paper

Modified Richardson-Dushman equation and modeling thermionic emission from monolayer graphene
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For the first time we have derived an equation for the temperature (T) dependent work function (W(T)) containing terms up to fifth power of T which gives a modified Richardson-Dushman (MRDE) equation that fits excellently well the experimental data of thermionic current density, J vs temperature, T data for suspended monolayer graphene. It provides a unique technique for accurate determination of work function, W0, Fermi energy, EF0 at 0 K and surface density of charge carriers, ns of graphene. The corresponding values obtained for monolayer suspended graphene are: W0 = 4.592 ± 0.002 eV, EF0 = 0.203 ± 0.002 eV; ns = 3.16x1012 cm-2. The model gives us unique method of determination of the Fermi energy of graphene as a function of temperature. The values of thermal expansion coefficient, α and surface density of charge, ns obtained with the use of the model are in excellent agreement with experiments. We also find that the model explains fairly well the J vs T data for carbon nanotubes, which is reported in a separate paper.

Paper Details

Date Published: 15 September 2016
PDF: 7 pages
Proc. SPIE 9927, Nanoengineering: Fabrication, Properties, Optics, and Devices XIII, 99270E (15 September 2016); doi: 10.1117/12.2231364
Show Author Affiliations
Dilip K. De, Covenant Univ. (Nigeria)
Olukunle C. Olawole, Covenant Univ. (Nigeria)

Published in SPIE Proceedings Vol. 9927:
Nanoengineering: Fabrication, Properties, Optics, and Devices XIII
Eva M. Campo; Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top