Share Email Print
cover

Proceedings Paper

Telescope polarization and image quality: Lyot coronagraph performance
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper we apply a vector representation of physical optics, sometimes called polarization aberration theory to study image formation in astronomical telescopes and instruments. We describe image formation in-terms of interferometry and use the Fresnel polarization equations to show how light, upon propagation through an optical system become partially polarized. We make the observation that orthogonally polarized light does not interfere to form an intensity image. We show how the two polarization aberrations (diattenuation and and retardance) distort the system PSF, decrease transmittance, and increase unwanted background above that predicted using the nonphysical scalar models. We apply the polarization aberration theory (PolAbT) described earlier (Breckinridge, Lam and Chipman, 2015, PASP 127, 445-468) to the fore-optics of the system designed for AFTA-WFIRST– CGI to obtain a performance estimate. Analysis of the open-literature design using PolAbT leads us to estimate that the WFIRST-CGI contrast will be in the 10-5 regime at the occulting mask. Much above the levels predicted by others (Krist, Nemati and Mennesson, 2016, JATIS 2, 011003). Remind the reader: 1. Polarizers are operators, not filters in the same sense as colored filters, 2. Adaptive optics does not correct polarization aberrations, 3. Calculations of both diattenuation and retardance are needed to model real-world telescope/coronagraph systems.

Paper Details

Date Published: 29 July 2016
PDF: 16 pages
Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99041C (29 July 2016); doi: 10.1117/12.2231242
Show Author Affiliations
J. B. Breckinridge, California Institute of Technology (United States)
College of Optical Sciences, The Univ. of Arizona (United States)
R. A. Chipman, College of Optical Sciences, The Univ. of Arizona (United States)


Published in SPIE Proceedings Vol. 9904:
Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave
Howard A. MacEwen; Giovanni G. Fazio; Makenzie Lystrup; Natalie Batalha; Nicholas Siegler; Edward C. Tong, Editor(s)

© SPIE. Terms of Use
Back to Top