Share Email Print

Proceedings Paper

Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying
Author(s): Dejan Arsenijević; Dieter Bimberg
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report on the dynamic properties of 1.31 μm InAs/GaAs and 1.55 μm InAs/InP quantum-dot Fabry-Perot lasers with the main focus on the increase of their large-signal modulation capabilities. A GaAs-based edge-emitter structure incorporating a standard p-doped active region with ten quantum-dot layers enables 15 Gbit/s data transmission at 70 °C upon direct modulation. The large number of layers and wide barriers cause significant carrier transport limitations. Since the carrier distribution across the stack is not uniform, a graded p-doping profile is implemented leading to an increased data rate of 20 Gbit/s, but at the expense of somewhat lower temperature stability. GaAs-based lasers operating exclusively from the first excited state demonstrate a further data rate increase to presently 25 Gbit/s, due to the larger degeneracy of the higher quantum-dot energy levels. 25 Gbit/s data transmission at 70 °C is also achieved with InAs/InP quantum-dot devices emitting in the C-band. Four- and eight-level pulse-amplitude modulation formats are utilized to increase the data rate at a given bandwidth compared to a standard on-off keying scheme. Data rates up to 35 Gbit/s are presented for both wavelength bands. Monolithically integrated two-section mode-locked lasers based on the graded pdoping structure provide low-jitter optical pulse trains and are utilized as optical sources for non-return-to-zero transmitters. 80 Gbit/s on-off keying and 80 GBd (160 Gbit/s) differential quadrature phase-shift keying data transmission based on optical time-division multiplexing are demonstrated using a packaged 40 GHz module.

Paper Details

Date Published: 28 April 2016
PDF: 10 pages
Proc. SPIE 9892, Semiconductor Lasers and Laser Dynamics VII, 98920S (28 April 2016); doi: 10.1117/12.2230758
Show Author Affiliations
Dejan Arsenijević, Technische Univ. Berlin (Germany)
Dieter Bimberg, Technische Univ. Berlin (Germany)

Published in SPIE Proceedings Vol. 9892:
Semiconductor Lasers and Laser Dynamics VII
Krassimir Panajotov; Marc Sciamanna; Angel Valle; Rainer Michalzik, Editor(s)

© SPIE. Terms of Use
Back to Top