Share Email Print
cover

Proceedings Paper

Diffuse light tomography to detect blood vessels using Tikhonov regularization
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Detection of blood vessels within light-scattering tissues involves detection of subtle shadows as blood absorbs light. These shadows are diffuse but measurable by a set of source-detector pairs in a spatial array of sources and detectors on the tissue surface. The measured shadows can reconstruct the internal position(s) of blood vessels.

The tomographic method involves a set of Ns sources and Nd detectors such that Nsd = Ns x Nd source-detector pairs produce Nsd measurements, each interrogating the tissue with a unique perspective, i.e., a unique region of sensitivity to voxels within the tissue.

This tutorial report describes the reconstruction of the image of a blood vessel within a soft tissue based on such source-detector measurements, by solving a matrix equation using Tikhonov regularization. This is not a novel contribution, but rather a simple introduction to a well-known method, demonstrating its use in mapping blood perfusion.

Paper Details

Date Published: 21 April 2016
PDF: 9 pages
Proc. SPIE 9917, Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS), 99170T (21 April 2016); doi: 10.1117/12.2230074
Show Author Affiliations
Huseyin Ozgur Kazanci, Akdeniz Univ. (Turkey)
Steven L. Jacques, Oregon Health and Science Univ. (United States)


Published in SPIE Proceedings Vol. 9917:
Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS)
Elina A. Genina; Valery V. Tuchin; Vladimir L. Derbov; Dmitry E. Postnov; Igor V. Meglinski; Kirill V. Larin; Alexander Borisovich Pravdin, Editor(s)

© SPIE. Terms of Use
Back to Top