Share Email Print
cover

Proceedings Paper

Frequency tuning of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers
Author(s): Markus Lindemann; Tobias Pusch; Rainer Michalzik; Nils C. Gerhardt; Martin R. Hofmann
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Controlling the coupled spin-photon dynamics in vertical-cavity surface-emitting lasers (VCSELs) is an attractive opportunity to overcome the limitations of conventional, purely charge based semiconductor lasers. Such spin-controlled VCSELs (spin-VCSELs) offer several advantages, like reduced threshold, spin amplification and polarization control. Furthermore the coupling between carrier spin and light polarization bears the potential for ultrafast polarization dynamics. By injecting spin-polarized carriers, the complex polarization dynamics can be controlled and utilized for high-speed applications. Polarization oscillations as resonance oscillations of the coupled spin- photon system can be generated using pulsed spin injection, which can be much faster than the intensity dynamics in conventional devices. We already demonstrated that the oscillations can be switched in a controlled manner. These controllable polarization dynamics can be used for ultrafast polarization-based optical data communication. The polarization oscillation frequency and therefore the possible data transmission rate is assumed to be mainly determined by the birefringence-induced mode-splitting. This provides a direct tool to increase the polarization dynamics toward higher frequencies by adding a high amount of birefringence to the VCSEL structure. Using this technique, we could recently demonstrate experimentally a birefringence splitting of more than 250 GHz using mechanical strain. Here, we employ the well-known spin-flip model to investigate the tuning of the polarization oscillation frequency. The changing mechanical strain is represented by a linear birefringence sweep to values up to 80πGHz. The wide tuning range presented enables us to generate polarization oscillation frequencies exceeding the conventional intensity modulation frequency in the simulated device by far, mainly dependent on the birefringence in the cavity only.

Paper Details

Date Published: 28 April 2016
PDF: 5 pages
Proc. SPIE 9892, Semiconductor Lasers and Laser Dynamics VII, 989224 (28 April 2016); doi: 10.1117/12.2229358
Show Author Affiliations
Markus Lindemann, Ruhr-Univ. Bochum (Germany)
Tobias Pusch, Univ. Ulm (Germany)
Rainer Michalzik, Univ. Ulm (Germany)
Nils C. Gerhardt, Ruhr-Univ. Bochum (Germany)
Martin R. Hofmann, Ruhr-Univ. Bochum (Germany)


Published in SPIE Proceedings Vol. 9892:
Semiconductor Lasers and Laser Dynamics VII
Krassimir Panajotov; Marc Sciamanna; Angel Valle; Rainer Michalzik, Editor(s)

© SPIE. Terms of Use
Back to Top