Share Email Print
cover

Proceedings Paper

Automatic and robust method for registration of optical imagery with point cloud data
Author(s): Yingdan Wu; Yang Ming
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Aim to the difficulty of automatic and robust registration of optical imagery with point cloud data, this paper propose a new method based on SIFT and Mutual Information (MI). The SIFT features are firstly extracted and matched, whose result is used to derive the coarse geometric relationship between the optical imagery and the point cloud data. Secondly, the MI-based similarity measure is used to derive the conjugate points. And then the RANSAC algorithm is adopted to eliminate the erroneous matching points. Repeating the procedure of MI matching and mismatching points deletion until the finest pyramid image level. Using the matching results, the transform model is determined. The experiments have been made and they demonstrate the potential of the MI-based measure for the registration of optical imagery with the point cloud data, and this highlight the feasibility and robustness of the method proposed in this paper to automated registration of multi-modal, multi-temporal remote sensing data for a wide range of applications.

Paper Details

Date Published: 8 December 2015
PDF: 5 pages
Proc. SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015), 98751B (8 December 2015); doi: 10.1117/12.2228798
Show Author Affiliations
Yingdan Wu, Hubei Univ. of Technology (China)
Yang Ming, CCCC Second Highway Consultants Co., Ltd (China)


Published in SPIE Proceedings Vol. 9875:
Eighth International Conference on Machine Vision (ICMV 2015)
Antanas Verikas; Petia Radeva; Dmitry Nikolaev, Editor(s)

© SPIE. Terms of Use
Back to Top