Share Email Print
cover

Proceedings Paper

Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines
Author(s): Carlos Espinoza Zúñiga; Lav R. Khot; Pete Jacoby; Sindhuja Sankaran
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

Paper Details

Date Published: 17 May 2016
PDF: 7 pages
Proc. SPIE 9866, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, 98660O (17 May 2016); doi: 10.1117/12.2228791
Show Author Affiliations
Carlos Espinoza Zúñiga, Washington State Univ. (United States)
Lav R. Khot, Washington State Univ. (United States)
Pete Jacoby, Washington State Univ. (United States)
Sindhuja Sankaran, Washington State Univ. (United States)


Published in SPIE Proceedings Vol. 9866:
Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping
John Valasek; J. Alex Thomasson, Editor(s)

© SPIE. Terms of Use
Back to Top