Share Email Print
cover

Proceedings Paper

Influence of resampling on accuracy of imbalanced classification
Author(s): E. Burnaev; P. Erofeev; A. Papanov
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In many real-world binary classification tasks (e.g. detection of certain objects from images), an available dataset is imbalanced, i.e., it has much less representatives of a one class (a minor class), than of another. Generally, accurate prediction of the minor class is crucial but it’s hard to achieve since there is not much information about the minor class. One approach to deal with this problem is to preliminarily resample the dataset, i.e., add new elements to the dataset or remove existing ones. Resampling can be done in various ways which raises the problem of choosing the most appropriate one. In this paper we experimentally investigate impact of resampling on classification accuracy, compare resampling methods and highlight key points and difficulties of resampling.

Paper Details

Date Published: 8 December 2015
PDF: 5 pages
Proc. SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015), 987521 (8 December 2015); doi: 10.1117/12.2228523
Show Author Affiliations
E. Burnaev, Institute for Information Transmission Problems (Russian Federation)
P. Erofeev, Institute for Information Transmission Problems (Russian Federation)
A. Papanov, Institute for Information Transmission Problems (Russian Federation)


Published in SPIE Proceedings Vol. 9875:
Eighth International Conference on Machine Vision (ICMV 2015)
Antanas Verikas; Petia Radeva; Dmitry Nikolaev, Editor(s)

© SPIE. Terms of Use
Back to Top