
Proceedings Paper
Deep transfer learning for automatic target classification: MWIR to LWIRFormat | Member Price | Non-Member Price |
---|---|---|
$14.40 | $18.00 |
![]() |
GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. | Check Access |
Paper Abstract
Publisher’s Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.
Paper Details
Date Published: 12 May 2016
PDF: 8 pages
Proc. SPIE 9844, Automatic Target Recognition XXVI, 984408 (12 May 2016); doi: 10.1117/12.2228378
Published in SPIE Proceedings Vol. 9844:
Automatic Target Recognition XXVI
Firooz A. Sadjadi; Abhijit Mahalanobis, Editor(s)
PDF: 8 pages
Proc. SPIE 9844, Automatic Target Recognition XXVI, 984408 (12 May 2016); doi: 10.1117/12.2228378
Show Author Affiliations
Zhengming Ding, Northeastern Univ. (United States)
Nasser Nasrabadi, West Virginia Univ. (United States)
Nasser Nasrabadi, West Virginia Univ. (United States)
Yun Fu, Northeastern Univ. (United States)
Published in SPIE Proceedings Vol. 9844:
Automatic Target Recognition XXVI
Firooz A. Sadjadi; Abhijit Mahalanobis, Editor(s)
© SPIE. Terms of Use
