Share Email Print
cover

Proceedings Paper

Stereo vision-based pedestrian detection using multiple features for automotive application
Author(s): Chung-Hee Lee; Dongyoung Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, we propose a stereo vision-based pedestrian detection using multiple features for automotive application. The disparity map from stereo vision system and multiple features are utilized to enhance the pedestrian detection performance. Because the disparity map offers us 3D information, which enable to detect obstacles easily and reduce the overall detection time by removing unnecessary backgrounds. The road feature is extracted from the v-disparity map calculated by the disparity map. The road feature is a decision criterion to determine the presence or absence of obstacles on the road. The obstacle detection is performed by comparing the road feature with all columns in the disparity. The result of obstacle detection is segmented by the bird’s-eye-view mapping to separate the obstacle area which has multiple objects into single obstacle area. The histogram-based clustering is performed in the bird's-eye-view map. Each segmented result is verified by the classifier with the training model. To enhance the pedestrian recognition performance, multiple features such as HOG, CSS, symmetry features are utilized. In particular, the symmetry feature is proper to represent the pedestrian standing or walking. The block-based symmetry feature is utilized to minimize the type of image and the best feature among the three symmetry features of H-S-V image is selected as the symmetry feature in each pixel. ETH database is utilized to verify our pedestrian detection algorithm.

Paper Details

Date Published: 9 December 2015
PDF: 5 pages
Proc. SPIE 9817, Seventh International Conference on Graphic and Image Processing (ICGIP 2015), 98170Y (9 December 2015); doi: 10.1117/12.2228214
Show Author Affiliations
Chung-Hee Lee, Daegu Gyeongbuk Institute of Science & Technology (Korea, Republic of)
Dongyoung Kim, Daegu Gyeongbuk Institute of Science & Technology (Korea, Republic of)


Published in SPIE Proceedings Vol. 9817:
Seventh International Conference on Graphic and Image Processing (ICGIP 2015)
Yulin Wang; Xudong Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top