Share Email Print

Proceedings Paper

Gap plasmon-based metasurfaces: fundamentals and applications (Conference Presentation)
Author(s): Anders Pors
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Plasmonic metasurfaces, which can be considered as the two-dimensional analog of metal-based metamaterials, have recently attracted considerable attention due to the possibility to fully control the reflected or transmitted light, while featuring relatively low losses even at optical wavelengths and being suitable for planar fabrication techniques. Among all the different design approaches, one particular configuration, consisting of a subwavelength thin dielectric spacer sandwiched between an optically thick metal film and an array of metal nanobricks (also known as nanopatches), has gained awareness from researchers working in practical any frequency regime as its realization only requires on step of lithography, yet with the possibility to fully control the amplitude and phase of the reflected light. At optical wavelengths, the full control of the reflected light is closely associated with gap surface plasmon (GSP) resonances and, hence, the configuration is also known as GSP-based metasurface. In this work, we highlight the connection between the properties of GSP modes and the optical response of GSP-based metasurfaces, particularly discussing the possibility to independently control either the reflection phases for two orthogonal polarizations or both the amplitude and phase of the reflected light for one polarization by proper choice of geometrical and material parameters [1]. Having obtained thorough insight into the optical response of GSP-based metasurfaces, we design and realize at optical and near-infrared wavelengths a broad range of inhomogeneous metasurfaces targeting different applications. For example, we exemplify the control of reflection amplitude by performing plasmonic color printing on a subwavelength scale [2], while full control of reflection phases for orthogonal polarizations are illustrated by the realization of unidirectional polarization-controlled surface plasmon polariton couplers [3] and compact polarimeters [4]. Finally, the simultaneous control of the amplitude and phase of reflected light allow us to perform calculus operations, such as differentiation and integration, on the incident light [5], which signifies the possibility to do optical signal processing using GSP-based metasurfaces. References: 1. A. Pors and S. I. Bozhevolnyi, “Gap plasmon-based phase-amplitude metasurfaces: material constraints”, Opt. Mater. Express 5, 2448-2458 (2015). 2. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing for ambient use”, Nano Lett. 14, 783-787 (2014). 3. A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons”, Light: Sci. Applications 3, e197 (2014). 4. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Plasmonic metagratings for simultaneous determination of Stokes parameters”, Optica 2, 716-723 (2015). 5. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces”, Nano Lett. 15, 791-797 (2015).

Paper Details

Date Published: 26 July 2016
PDF: 1 pages
Proc. SPIE 9883, Metamaterials X, 98830R (26 July 2016); doi: 10.1117/12.2228014
Show Author Affiliations
Anders Pors, Univ. of Southern Denmark (Denmark)

Published in SPIE Proceedings Vol. 9883:
Metamaterials X
Allan D. Boardman; Nigel P. Johnson; Kevin F. MacDonald; Ekmel Özbay, Editor(s)

© SPIE. Terms of Use
Back to Top