Share Email Print
cover

Proceedings Paper

Predictive neuro-fuzzy controller for multilink robot manipulator
Author(s): Emre Kaymaz; Sunanda Mitra
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.

Paper Details

Date Published: 3 October 1995
PDF: 12 pages
Proc. SPIE 2588, Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision, and Materials Handling, (3 October 1995); doi: 10.1117/12.222711
Show Author Affiliations
Emre Kaymaz, KT-Tech, Inc. (United States)
Sunanda Mitra, Texas Tech Univ. (United States)


Published in SPIE Proceedings Vol. 2588:
Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision, and Materials Handling
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top