Share Email Print

Proceedings Paper

Micromechanical cantilevers and scanning probe microscopes
Author(s): Scott A. Miller; Yang Xu; Noel C. MacDonald
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have fabricated two microelectromechanical scanning tunneling microscopes (Micro- STMs) with 3D (xyz) actuators and integrated high aspects ratio tips. The reduction in the size of scanning probe microscopes allows for faster scanning speeds, array architectures, and massively parallel operation. The two Micro-STMs are fabricated from single crystal silicon using the high-aspect-ratio SCREAM process and are small enough to be used in array architectures. The torsional cantilever design used for out-of-plane (z) motion can be easily be adapted to scanning force microscopy. Typical atomic force microscope cantilevers have spring constants on the order of 0.01 - 10 N/m. To produce cantilevers with lower spring constants, ordinary thin film techniques would require longer (several mm) and thinner (sub- micrometers ) cantilevers. A mechanical analysis of torsional cantilevers reveals that high aspect ratio rectangular beams, such as the ones we fabricate, are easily twisted. By using the torsional design, we can achieve lower spring constants (10-1 - 10-7 N/m) without having to make a very thin film cantilever. We have demonstrated torsional cantilevers with spring constants on the order of 10-2 N/m. These cantilevers can be used as extremely sensitive force sensors for atomic force microscopy.

Paper Details

Date Published: 26 September 1995
PDF: 8 pages
Proc. SPIE 2640, Microlithography and Metrology in Micromachining, (26 September 1995); doi: 10.1117/12.222655
Show Author Affiliations
Scott A. Miller, Cornell Univ. (United States)
Yang Xu, Cornell Univ. (United States)
Noel C. MacDonald, Cornell Univ. (United States)

Published in SPIE Proceedings Vol. 2640:
Microlithography and Metrology in Micromachining
Michael T. Postek, Editor(s)

© SPIE. Terms of Use
Back to Top