Share Email Print
cover

Proceedings Paper

Constellation labeling optimization for bit-interleaved coded APSK
Author(s): Xingyu Xiang; Zijian Mo; Zhonghai Wang; Khanh Pham; Erik Blasch; Genshe Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

Paper Details

Date Published: 13 May 2016
PDF: 11 pages
Proc. SPIE 9838, Sensors and Systems for Space Applications IX, 98380Q (13 May 2016); doi: 10.1117/12.2225414
Show Author Affiliations
Xingyu Xiang, Intelligent Fusion Technology, Inc. (United States)
Zijian Mo, Intelligent Fusion Technology, Inc. (United States)
Zhonghai Wang, Intelligent Fusion Technology, Inc. (United States)
Khanh Pham, Air Force Research Lab. (United States)
Erik Blasch, Air Force Research Lab. (United States)
Genshe Chen, Intelligent Fusion Technology, Inc. (United States)


Published in SPIE Proceedings Vol. 9838:
Sensors and Systems for Space Applications IX
Khanh D. Pham; Genshe Chen, Editor(s)

© SPIE. Terms of Use
Back to Top