Share Email Print

Proceedings Paper

Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature
Author(s): Junko Morikawa; Massimiliano Zamengo; Yukitaka Kato
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies.

In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe.

Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy storage.

Paper Details

Date Published: 11 May 2016
PDF: 8 pages
Proc. SPIE 9861, Thermosense: Thermal Infrared Applications XXXVIII, 98610L (11 May 2016); doi: 10.1117/12.2225130
Show Author Affiliations
Junko Morikawa, Tokyo Institute of Technology (Japan)
Massimiliano Zamengo, Tokyo Institute of Technology (Japan)
Yukitaka Kato, Tokyo Institute of Technology (Japan)

Published in SPIE Proceedings Vol. 9861:
Thermosense: Thermal Infrared Applications XXXVIII
Joseph N. Zalameda; Paolo Bison, Editor(s)

© SPIE. Terms of Use
Back to Top