Share Email Print
cover

Proceedings Paper

Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects
Author(s): Steven Adler-Golden; David Less; Xuemin Jin; Peter Rynes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume uniform illumination across the scene and horizontal surfaces with Lambertian reflectance. When these algorithms are used to process real 3-D scenes, the retrieved “apparent” values contain the strong, spatially dependent variations in illumination as well as surface bidirectional reflectance distribution function (BRDF) effects. This is especially problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal surfaces can show strong specularity. The goals of this study are to characterize long-wavelength infrared (LWIR) signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values. We take advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature (MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky downwelling illumination and MuSES-based non-uniform environmental illumination.

Paper Details

Date Published: 17 May 2016
PDF: 7 pages
Proc. SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, 98400P (17 May 2016); doi: 10.1117/12.2224115
Show Author Affiliations
Steven Adler-Golden, Spectral Sciences, Inc. (United States)
David Less, ThermoAnalytics, Inc. (United States)
Xuemin Jin, Spectral Sciences, Inc. (United States)
Peter Rynes, ThermoAnalytics, Inc. (United States)


Published in SPIE Proceedings Vol. 9840:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII
Miguel Velez-Reyes; David W. Messinger, Editor(s)

© SPIE. Terms of Use
Back to Top