Share Email Print
cover

Proceedings Paper

Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects
Author(s): Steven Adler-Golden; David Less; Xuemin Jin; Peter Rynes
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume uniform illumination across the scene and horizontal surfaces with Lambertian reflectance. When these algorithms are used to process real 3-D scenes, the retrieved “apparent” values contain the strong, spatially dependent variations in illumination as well as surface bidirectional reflectance distribution function (BRDF) effects. This is especially problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal surfaces can show strong specularity. The goals of this study are to characterize long-wavelength infrared (LWIR) signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values. We take advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature (MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky downwelling illumination and MuSES-based non-uniform environmental illumination.

Paper Details

Date Published: 17 May 2016
PDF: 7 pages
Proc. SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, 98400P (17 May 2016); doi: 10.1117/12.2224115
Show Author Affiliations
Steven Adler-Golden, Spectral Sciences, Inc. (United States)
David Less, ThermoAnalytics, Inc. (United States)
Xuemin Jin, Spectral Sciences, Inc. (United States)
Peter Rynes, ThermoAnalytics, Inc. (United States)


Published in SPIE Proceedings Vol. 9840:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII
Miguel Velez-Reyes; David W. Messinger, Editor(s)

© SPIE. Terms of Use
Back to Top