Share Email Print
cover

Proceedings Paper

Spectral feature characterization methods for blood stain detection in crime scene backgrounds
Author(s): Jie Yang; Jobin J. Mathew; Roger R. Dube; David W. Messinger
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Blood stains are one of the most important types of evidence for forensic investigation. They contain valuable DNA information, and the pattern of the stains can suggest specifics about the nature of the violence that transpired at the scene. Blood spectral signatures containing unique reflectance or absorption features are important both for forensic on-site investigation and laboratory testing. They can be used for target detection and identification applied to crime scene hyperspectral imagery, and also be utilized to analyze the spectral variation of blood on various backgrounds. Non-blood stains often mislead the detection and can generate false alarms at a real crime scene, especially for dark and red backgrounds. This paper measured the reflectance of liquid blood and 9 kinds of non-blood samples in the range of 350 nm - 2500 nm in various crime scene backgrounds, such as pure samples contained in petri dish with various thicknesses, mixed samples with different colors and materials of fabrics, and mixed samples with wood, all of which are examined to provide sub-visual evidence for detecting and recognizing blood from non-blood samples in a realistic crime scene. The spectral difference between blood and non-blood samples are examined and spectral features such as “peaks” and “depths” of reflectance are selected. Two blood stain detection methods are proposed in this paper. The first method uses index to denote the ratio of “depth” minus “peak” over“depth” add“peak” within a wavelength range of the reflectance spectrum. The second method uses relative band depth of the selected wavelength ranges of the reflectance spectrum. Results show that the index method is able to discriminate blood from non-blood samples in most tested crime scene backgrounds, but is not able to detect it from black felt. Whereas the relative band depth method is able to discriminate blood from non-blood samples on all of the tested background material types and colors.

Paper Details

Date Published: 17 May 2016
PDF: 14 pages
Proc. SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, 98400E (17 May 2016); doi: 10.1117/12.2224099
Show Author Affiliations
Jie Yang, Rochester Institute of Technology (United States)
Jobin J. Mathew, Rochester Institute of Technology (United States)
Roger R. Dube, Rochester Institute of Technology (United States)
David W. Messinger, Rochester Institute of Technology (United States)


Published in SPIE Proceedings Vol. 9840:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII
Miguel Velez-Reyes; David W. Messinger, Editor(s)

© SPIE. Terms of Use
Back to Top