Share Email Print
cover

Proceedings Paper

Low-tubal-rank tensor completion using alternating minimization
Author(s): Xiao-Yang Liu; Shuchin Aeron; Vaneet Aggarwal; Xiaodong Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The low-tubal-rank tensors have been recently proposed to model real-world multidimensional data. In this paper, we study the low-tubal-rank tensor completion problem, i.e., to recover a third-order tensor by observing a subset of elements selected uniform at random. We propose a fast iterative algorithm, called Tubal-Alt-Min, that is inspired by similar approach for low rank matrix completion. The unknown low-tubal-rank tensor is parameterized as the product of two much smaller tensors with the low-tubal-rank property being automatically incorporated, and Tubal-Alt-Min alternates between estimating those two tensors using tensor least squares minimization. We note that the tensor least squares minimization is different from its counterpart and nontrivial, and this paper gives a routine to carry out this operation. Further, on both synthetic data and real-world video data, evaluation results show that compared with the tensor nuclear norm minimization, the proposed algorithm improves the recovery error by orders of magnitude with smaller running time for higher sampling rates.

Paper Details

Date Published: 12 May 2016
PDF: 11 pages
Proc. SPIE 9848, Modeling and Simulation for Defense Systems and Applications XI, 984809 (12 May 2016); doi: 10.1117/12.2224039
Show Author Affiliations
Xiao-Yang Liu, Columbia Univ. (United States)
Shanghai Jia Tong Univ. (China)
Shuchin Aeron, Tufts Univ. (United States)
Vaneet Aggarwal, Purdue Univ. (United States)
Xiaodong Wang, Columbia Univ. (United States)


Published in SPIE Proceedings Vol. 9848:
Modeling and Simulation for Defense Systems and Applications XI
Susan Harkrider; Aaron L. Paolini, Editor(s)

© SPIE. Terms of Use
Back to Top