Share Email Print
cover

Proceedings Paper

Display MTF measurements based on scanning and imaging technologies and its importance in the application space
Author(s): Balvinder Kaur; Jeff Olson; Eric A. Flug
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Measuring the Modulation Transfer Function (MTF) of a display monitor is necessary for many applications such as: modeling end-to-end systems, conducting perception experiments, and performing targeting tasks in real-word scenarios. The MTF of a display defines the resolution properties and quantifies how well the spatial frequencies are displayed on a monitor. Many researchers have developed methods to measure display MTFs using either scanning or imaging devices. In this paper, we first present methods to measure display MTFs using two separate technologies and then discuss the impact of a display MTF on a system’s performance. The two measurement technologies were scanning with a photometer and imaging with a CMOS based camera. To estimate a true display MTF, measurements made with the photometer were backed out for the scanning optics aperture. The developed methods were applied to measure MTFs of the two types of monitors, Cathode Ray Tube (CRT) and Liquid Crystal Display (LCD). The accuracy of the measured MTFs was validated by comparing MTFs measured with the two systems. The methods presented here are simple and can be easily implemented employing either a Prichard photometer or an imaging device. In addition, the impact of a display MTF on the end-to-end performance of a system was modeled using NV-IPM.

Paper Details

Date Published: 3 May 2016
PDF: 11 pages
Proc. SPIE 9820, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVII, 98200Y (3 May 2016); doi: 10.1117/12.2223960
Show Author Affiliations
Balvinder Kaur, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Jeff Olson, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Eric A. Flug, U.S. Army Night Vision & Electronic Sensors Directorate (United States)


Published in SPIE Proceedings Vol. 9820:
Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVII
Gerald C. Holst; Keith A. Krapels, Editor(s)

© SPIE. Terms of Use
Back to Top