Share Email Print
cover

Proceedings Paper

On validating remote sensing simulations using coincident real data
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra’s shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

Paper Details

Date Published: 17 May 2016
PDF: 6 pages
Proc. SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, 984024 (17 May 2016); doi: 10.1117/12.2223455
Show Author Affiliations
Mingming Wang, Rochester Institute of Technology (United States)
Wei Yao, Rochester Institute of Technology (United States)
Scott Brown, Rochester Institute of Technology (United States)
Adam Goodenough, Rochester Institute of Technology (United States)
Jan van Aardt, Rochester Institute of Technology (United States)


Published in SPIE Proceedings Vol. 9840:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII
Miguel Velez-Reyes; David W. Messinger, Editor(s)

© SPIE. Terms of Use
Back to Top