Share Email Print

Proceedings Paper

Prediction of tomato freshness using infrared thermal imaging and transient step heating
Author(s): Jing Xie; Sheng-Jen Hsieh; Zuojun Tan; Hongjin Wang; Jian Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Tomatoes are the world's 8th most valuable agricultural product, valued at $58 billion dollars annually. Nondestructive testing and inspection of tomatoes is challenging and multi-faceted. Optical imaging is used for quality grading and ripeness. Spectral and hyperspectral imaging are used to detect surface detects and cuticle cracks. Infrared thermography has been used to distinguish between different stages of maturity. However, determining the freshness of tomatoes is still an open problem. For this research, infrared thermography was used for freshness prediction. Infrared images were captured at a rate of 1 frame per second during heating (0 to 40 seconds) and cooling (0 to 160 seconds). The absolute temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes in a three-layer artificial neural network (ANN) model. Two-thirds of the data were used for training and one-third was used for testing. Results suggest that by using infrared imaging data as input to an ANN model, tomato freshness can be predicted with 90% accuracy. T-tests and F-tests were conducted based on absolute temperature over time. The results suggest that there is a mean temperature difference between fresh and less fresh tomatoes (α = 0.05). However, there is no statistical difference in terms of temperature variation, which suggests a water concentration difference.

Paper Details

Date Published: 11 May 2016
PDF: 10 pages
Proc. SPIE 9861, Thermosense: Thermal Infrared Applications XXXVIII, 98610B (11 May 2016); doi: 10.1117/12.2223342
Show Author Affiliations
Jing Xie, Huazhong Agricultural Univ. (China)
Sheng-Jen Hsieh, Texas A&M Univ. (United States)
Zuojun Tan, Huazhong Agricultural Univ. (China)
Hongjin Wang, Texas A&M Univ. (United States)
Jian Zhang, Huazhong Agricultural Univ. (China)

Published in SPIE Proceedings Vol. 9861:
Thermosense: Thermal Infrared Applications XXXVIII
Joseph N. Zalameda; Paolo Bison, Editor(s)

© SPIE. Terms of Use
Back to Top