Share Email Print
cover

Proceedings Paper

Fractal characteristics for binary noise radar waveform
Author(s): Bing C. Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Noise radars have many advantages over conventional radars and receive great attentions recently. The performance of a noise radar is determined by its waveforms. Investigating characteristics of noise radar waveforms has significant value for evaluating noise radar performance. In this paper, we use binomial distribution theory to analyze general characteristics of binary phase coded (BPC) noise waveforms. Focusing on aperiodic autocorrelation function, we demonstrate that the probability distributions of sidelobes for a BPC noise waveform depend on the distances of these sidelobes to the mainlobe. The closer a sidelobe to the mainlobe, the higher the probability for this sidelobe to be a maximum sidelobe. We also develop Monte Carlo framework to explore the characteristics that are difficult to investigate analytically. Through Monte Carlo experiments, we reveal the Fractal relationship between the code length and the maximum sidelobe value for BPC waveforms, and propose using fractal dimension to measure noise waveform performance.

Paper Details

Date Published: 12 May 2016
PDF: 9 pages
Proc. SPIE 9829, Radar Sensor Technology XX, 98290G (12 May 2016); doi: 10.1117/12.2223221
Show Author Affiliations
Bing C. Li, Lockheed Martin Systems Integration-Owego (United States)


Published in SPIE Proceedings Vol. 9829:
Radar Sensor Technology XX
Kenneth I. Ranney; Armin Doerry, Editor(s)

© SPIE. Terms of Use
Back to Top