Share Email Print
cover

Proceedings Paper • Open Access

Raman spectroscopy setup and experiments for the advanced undergraduate lab
Author(s): Ralf Bausinger

Paper Abstract

Raman Spectroscopy is an important characterization technique in analytical chemistry and in solid state physics. This contribution describes the redesign of a Raman experiment for the Advanced Physics Lab and shows ex-perimental results acquired with this new setup. Solid and liquid samples are irradiated by a frequency doubled Nd:YAG laser in backscattering geometry. The emission is focused onto the fibre end face of an USB spec-trometer. Stokes and Anti-Stokes emission lines are observed simultaneously and their polarisation is analysed. The students start with the spectral calibration of the spectrometer and check its linearity. They optimize their first Raman spectrum of solid sulfur according to these results and evaluate the intensity ratio of the corre-sponding Stokes and Anti-Stokes lines for a temperature measurement of the sample. The students explain the spectral differences of a series of chlorine-substituted hydrocarbons by the changes in the molecular structures and symmetries. Finally they determine the concentration of an unknown water-ethanol solution. This contri-bution discusses also safety concerns regarding the used hydrocarbons and shows alternative samples. Raman Spectroscopy is an important characterization technique in analytical chemistry and in solid state physics. This contribution describes the redesign of a Raman experiment for the Advanced Physics Lab and shows experimen-tal results acquired with this new setup. Solid and liquid samples are irradiated by a frequency doubled Nd:YAG laser in backscattering geometry. The emission is focused onto the fibre end face of an USB spectrometer. Stokes and Anti-Stokes emission lines are observed simultaneously and their polarisation is analysed. The students start with the spectral calibration of the spectrometer and check its linearity. They optimize their first Raman spec-trum of solid sulfur according to these results and evaluate the intensity ratio of the corresponding Stokes and Anti-Stokes lines for a temperature measurement of the sample. The students explain the spectral differences of a series of chlorine-substituted hydrocarbons by the changes in the molecular structures and symmetries. Finally they determine the concentration of an unknown water-ethanol solution. This contribution discusses also safety concerns regarding the used hydrocarbons and shows alternative samples.

Paper Details

Date Published: 8 October 2015
PDF: 6 pages
Proc. SPIE 9793, Education and Training in Optics and Photonics: ETOP 2015, 97931M (8 October 2015); doi: 10.1117/12.2223121
Show Author Affiliations
Ralf Bausinger, Univ. Konstanz (Germany)


Published in SPIE Proceedings Vol. 9793:
Education and Training in Optics and Photonics: ETOP 2015

© SPIE. Terms of Use
Back to Top