Share Email Print

Proceedings Paper

Control approach development for variable recruitment artificial muscles
Author(s): Tyler E. Jenkins; Edward M. Chapman; Matthew Bryant
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.

Paper Details

Date Published: 15 April 2016
PDF: 10 pages
Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 979911 (15 April 2016); doi: 10.1117/12.2222201
Show Author Affiliations
Tyler E. Jenkins, North Carolina State Univ. (United States)
Edward M. Chapman, North Carolina State Univ. (United States)
Matthew Bryant, North Carolina State Univ. (United States)

Published in SPIE Proceedings Vol. 9799:
Active and Passive Smart Structures and Integrated Systems 2016
Gyuhae Park, Editor(s)

© SPIE. Terms of Use
Back to Top