Share Email Print
cover

Proceedings Paper

The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)
Author(s): Kenneth M. Tichauer

Paper Abstract

One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to “swamp” the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered “untargeted”/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called “paired-agent” imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, “The use of paired labeling in the determination of tumor-localizing antibodies,” Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., “Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging,” Phys Med Biol, 60(14), R239-69 (2015).

Paper Details

Date Published: 26 April 2016
PDF: 1 pages
Proc. SPIE 9696, Molecular-Guided Surgery: Molecules, Devices, and Applications II, 969608 (26 April 2016); doi: 10.1117/12.2220408
Show Author Affiliations
Kenneth M. Tichauer, Illinois Institute of Technology (United States)


Published in SPIE Proceedings Vol. 9696:
Molecular-Guided Surgery: Molecules, Devices, and Applications II
Brian W. Pogue; Sylvain Gioux, Editor(s)

© SPIE. Terms of Use
Back to Top