Share Email Print
cover

Proceedings Paper

Study of energy delivery and mean free path of low energy electrons in EUV resists
Author(s): Suchit Bhattarai; Andrew R. Neureuther; Patrick P. Naulleau
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The relative importance of secondary electrons in delivering energy in photoresist films was assessed by performing large area exposures and by quantifying the inelastic mean free path of electrons in a leading chemically amplified positive tone EUV resist. A low energy electron microscope was used to directly pattern large (~15μm x 20μm) features with 15-80 eV electrons followed by analyzing the resulting dissolution rate contrast curve data. In the 40 to 80 eV regime the energy delivery was found to scale roughly proportionally with electron energy. In 15 to 30 eV regime however, this energy scaling did not explain the resist thickness loss data. The dose required to lower the resist thickness down to 20 nm was found to be 2-5X larger for 15 eV electrons than for 20, 25 and 30 eV electrons. Using scattering models from the literature including phonon scattering and optical data deduced electron energy loss spectroscopy and optical reflectometry, the inelastic mean free path values at energies between 10 eV and 92 eV range between about 2.8 and 0.6 nm respectively.

Paper Details

Date Published: 25 March 2016
PDF: 9 pages
Proc. SPIE 9779, Advances in Patterning Materials and Processes XXXIII, 97790B (25 March 2016); doi: 10.1117/12.2220390
Show Author Affiliations
Suchit Bhattarai, Univ. of California, Berkeley (United States)
Andrew R. Neureuther, Univ. of California, Berkeley (United States)
Patrick P. Naulleau, Lawrence Berkeley National Lab. (United States)


Published in SPIE Proceedings Vol. 9779:
Advances in Patterning Materials and Processes XXXIII
Christoph K. Hohle; Rick Uchida, Editor(s)

© SPIE. Terms of Use
Back to Top