Share Email Print
cover

Proceedings Paper

The cosmic web and microwave background fossilize the first turbulent combustion
Author(s): Carl H. Gibson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The weblike structure of the cosmic microwave background CMB temperature fluctuations are interpreted as fossils of the first turbulent combustion that drives the big bang1,2,3. Modern turbulence theory3 requires that inertial vortex forces cause turbulence to always cascade from small scales to large, contrary to the standard turbulence model where the cascade is reversed. Assuming that the universe begins at Planck length 10-35 m and temperature 1032 K, the mechanism of the big bang is a powerful turbulent combustion instability, where turbulence forms at the Kolmogorov scale and mass-energy is extracted by < -10113 Pa negative stresses from big bang turbulence working against gravity. Prograde accretion of a Planck antiparticle on a spinning particle-antiparticle pair releases 42% of a particle rest mass from the Kerr metric, producing a spinning gas of turbulent Planck particles that cascades to larger scales at smaller temperatures (10-27 m, 1027 K) retaining the Planck density 1097 kg m-3, where quarks form and gluon viscosity fossilizes the turbulence. Viscous stress powers inflation to ~ 10 m and ~ 10100 kg. The CMB shows signatures of both plasma and big bang turbulence. Direct numerical simulations support the new turbulence theory6.

Paper Details

Date Published: 11 September 2015
PDF: 10 pages
Proc. SPIE 9606, Instruments, Methods, and Missions for Astrobiology XVII, 960609 (11 September 2015); doi: 10.1117/12.2219600
Show Author Affiliations
Carl H. Gibson, Univ. of California, San Diego (United States)


Published in SPIE Proceedings Vol. 9606:
Instruments, Methods, and Missions for Astrobiology XVII
Richard B. Hoover; Gilbert V. Levin; Alexei Yu. Rozanov; Nalin C. Wickramasinghe, Editor(s)

© SPIE. Terms of Use
Back to Top