Share Email Print
cover

Proceedings Paper

Improvement of fatigue life and prevention of internal crack initiation of chopped carbon fiber reinforced plastics modified with micro glass fibers
Author(s): Ryohei Fujitani; Kazuya Okubo; Toru Fujii
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The purpose of this study is to improve fatigue properties of chopped carbon fiber reinforced plastics fabricated by SMC (Sheet Molding Compound) method and to clarify the mechanism for improvement. To enhance the properties, micro glass fibers with 500nm in diameter were added directly into vinyl ester resin with 0.3wt% contents. The chopped carbon fiber reinforced plastics were fabricated and cured at room temperature for 1hour under 1MPa and then at 60degree-C for 3hours. After curing, the fabricated plate was cut into the dimension of specimen. Tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were investigated by tensile and three point bending test and cyclic tension-tension test, respectively. The behavior of strain concentration around the tips of carbon fiber were discussed with model specimen on the observations with DIC (Digital Image Correlation) method and polarizing microscope under tensile loading, in which one chopped carbon fiber was embedded into the matrix. In conclusion, when toughened vinyl ester resin modified with micro glass fibers was used as matrix, tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were increased 56.6%, 49.8% and 14 to 23 times compared with those of unmodified specimens. It should be explained that static and dynamic properties of chopped carbon fiber reinforced plastics were improved by that crack initiation and propagation were prevented according to the prevention of the locally increasing of strain around the tip of carbon fiber, when vinyl ester resin modified with micro glass fibers was used as matrix.

Paper Details

Date Published: 18 April 2016
PDF: 12 pages
Proc. SPIE 9800, Behavior and Mechanics of Multifunctional Materials and Composites 2016, 98000U (18 April 2016); doi: 10.1117/12.2219466
Show Author Affiliations
Ryohei Fujitani, Doshisha Univ. (Japan)
Kazuya Okubo, Doshisha Univ. (Japan)
Toru Fujii, Doshisha Univ. (Japan)


Published in SPIE Proceedings Vol. 9800:
Behavior and Mechanics of Multifunctional Materials and Composites 2016
Nakhiah C. Goulbourne, Editor(s)

© SPIE. Terms of Use
Back to Top