Share Email Print
cover

Proceedings Paper

Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue (Conference Presentation)

Paper Abstract

Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.

Paper Details

Date Published: 26 April 2016
PDF: 1 pages
Proc. SPIE 9703, Optical Biopsy XIV: Toward Real-Time Spectroscopic Imaging and Diagnosis, 97030J (26 April 2016); doi: 10.1117/12.2219407
Show Author Affiliations
Richard M. Levenson, Univ. of California, Davis (United States)
Zachary Harmany, Univ. of California, Davis (United States)
Stavros G. Demos, Lawrence Livermore National Lab. (United States)
Farzad Fereidouni, Univ. of California, Davis (United States)


Published in SPIE Proceedings Vol. 9703:
Optical Biopsy XIV: Toward Real-Time Spectroscopic Imaging and Diagnosis
Robert R. Alfano; Stavros G. Demos, Editor(s)

© SPIE. Terms of Use
Back to Top