Share Email Print
cover

Proceedings Paper

Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: the Tuned Mass-Damper-Interter (TMDI)
Author(s): Agathoklis Giaralis; Laurentiu Marian
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper explores the practical benefits of the recently proposed by the authors tuned mass-damper-inerter (TMDI) visà- vis the classical tuned mass-damper (TMD) for the passive vibration control of seismically excited linearly building structures assumed to respond linearly. Special attention is focused on showcasing that the TMDI requires considerably reduced attached mass/weight to achieve the same vibration suppression level as the classical TMD by exploiting the mass amplification effect of the ideal inerter device. The latter allows for increasing the inertial property of the TMDI without a significant increase to its physical weight. To this end, novel numerical results pertaining to a seismically excited 3-storey frame building equipped with optimally designed TMDIs for various values of attached mass and inertance (i.e., constant of proportionality of the inerter resisting force in mass units) are furnished. The seismic action is modelled by a non-stationary stochastic process compatible with the elastic acceleration response spectrum of the European seismic code (Eurocode 8), while the TMDIs are tuned to minimize the mean square top floor displacement. It is shown that the TMDI achieves the same level of performance as an unconventional “large mass” TMD for seismic protection (i.e., more than 10% of attached mass of the total building mass), by incorporating attached masses similar to the ones used for controlling wind-induced vibrations via TMDs (i.e., 1%-5% of the total building mass). Moreover, numerical data from response history analyses for a suite of Eurocode 8 compatible recorded ground motions further demonstrate that optimally tuned TMDIs for top floor displacement minimization achieve considerable reductions in terms of top floor acceleration and attached mass displacement (stroke) compared to the classical TMD with the same attached mass.

Paper Details

Date Published: 15 April 2016
PDF: 10 pages
Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 97991G (15 April 2016); doi: 10.1117/12.2219324
Show Author Affiliations
Agathoklis Giaralis, City Univ. London (United Kingdom)
Laurentiu Marian, City Univ. London (United Kingdom)


Published in SPIE Proceedings Vol. 9799:
Active and Passive Smart Structures and Integrated Systems 2016
Gyuhae Park, Editor(s)

© SPIE. Terms of Use
Back to Top