Share Email Print
cover

Proceedings Paper

Simulation of the transient electromechanical behaviour of dielectric elastomer transducers
Author(s): Holger Mößinger; Florentine Förster-Zügel; Helmut F. Schlaak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To design systems utilizing dielectric elastomer transducers (DET) models are necessary to describe the behaviour of the DET and assess the system performance in advance. For basic set-ups simple analytical models or lumped parameter models are available and provide reasonable results. For more complex set-ups these models only allow a rough estimation of the system performance, not accurate enough to achieve an optimal system design. Therefore system designers typically resort to numerical simulation tools. Commercially available tools and models specialize on either electrical or mechanical domain thus simplifying or even neglecting effects in the other domain respectively. In this work we present a simulation tool taking into account the transient electrical and mechanical behaviour of DET under different mechanical load conditions and electrical driving frequencies. Our model can describe transient electrical and mechanical behaviour, such as electrical resistance, mechanical hyperelastic and viscosity of the electrodes and dielectric material. Model parameters are derived from measurements of the dielectric and the electrode resistance as well as e.g. the materials Young’s modulus. The results from the simulation are compared to simple lumped parameter based models.

Paper Details

Date Published: 15 April 2016
PDF: 10 pages
Proc. SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, 979831 (15 April 2016); doi: 10.1117/12.2219133
Show Author Affiliations
Holger Mößinger, Technische Univ. Darmstadt (Germany)
Florentine Förster-Zügel, Technische Univ. Darmstadt (Germany)
Helmut F. Schlaak, Technische Univ. Darmstadt (Germany)


Published in SPIE Proceedings Vol. 9798:
Electroactive Polymer Actuators and Devices (EAPAD) 2016
Yoseph Bar-Cohen; Frédéric Vidal, Editor(s)

© SPIE. Terms of Use
Back to Top