Share Email Print

Proceedings Paper

A hybrid non-reflective boundary technique for efficient simulation of guided waves using local interaction simulation approach
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Local interaction simulation approach (LISA) is a highly parallelizable numerical scheme for guided wave simulation in structural health monitoring (SHM). This paper addresses the issue of simulating wave propagation in unbounded domain through the implementation of non-reflective boundary (NRB) in LISA. In this study, two different categories of NRB, i.e., the non-reflective boundary condition (NRBC) and the absorbing boundary layer (ABL), have been investigated in the parallelized LISA scheme. For the implementation of NRBC, a set of general LISA equations considering the effect from boundary stress is obtained first. As a simple example, the Lysmer and Kuhlemeyer (L-K) model is applied here to demonstrate the easiness of NRBC implementation in LISA. As a representative of ABL implementation, the LISA scheme incorporating the absorbing layers with increasing damping (ALID) is also proposed, based on elasto-dynamic equations considering damping effect. Finally, an effective hybrid model combining L-K and ALID methods in LISA is developed, and guidelines for implementing the hybrid model is presented. Case studies on a three-dimensional plate model compares the performance of hybrid method to that of L-K and ALID acting independently. The simulation results demonstrate that best absorbing efficiency is achieved with the hybrid method.

Paper Details

Date Published: 1 April 2016
PDF: 14 pages
Proc. SPIE 9805, Health Monitoring of Structural and Biological Systems 2016, 98050U (1 April 2016); doi: 10.1117/12.2218925
Show Author Affiliations
Hui Zhang, Univ. of Michigan (United States)
Carlos E. S. Cesnik, Univ. of Michigan (United States)

Published in SPIE Proceedings Vol. 9805:
Health Monitoring of Structural and Biological Systems 2016
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top