Share Email Print
cover

Proceedings Paper

Optimization of vibratory energy harvesters with stochastic parametric uncertainty: a new perspective
Author(s): Ashkan Haji Hosseinloo; Konstantin Turitsyn
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Vibration energy harvesting has been shown as a promising power source for many small-scale applications mainly because of the considerable reduction in the energy consumption of the electronics and scalability issues of the conventional batteries. However, energy harvesters may not be as robust as the conventional batteries and their performance could drastically deteriorate in the presence of uncertainty in their parameters. Hence, study of uncertainty propagation and optimization under uncertainty is essential for proper and robust performance of harvesters in practice. While all studies have focused on expectation optimization, we propose a new and more practical optimization perspective; optimization for the worst-case (minimum) power. We formulate the problem in a generic fashion and as a simple example apply it to a linear piezoelectric energy harvester. We study the effect of parametric uncertainty in its natural frequency, load resistance, and electromechanical coupling coefficient on its worst-case power and then optimize for it under different confidence levels. The results show that there is a significant improvement in the worst-case power of thus designed harvester compared to that of a naively-optimized (deterministically-optimized) harvester.

Paper Details

Date Published: 15 April 2016
PDF: 10 pages
Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 97991L (15 April 2016); doi: 10.1117/12.2218892
Show Author Affiliations
Ashkan Haji Hosseinloo, Massachusetts Institute of Technology (United States)
Konstantin Turitsyn, Massachusetts Institute of Technology (United States)


Published in SPIE Proceedings Vol. 9799:
Active and Passive Smart Structures and Integrated Systems 2016
Gyuhae Park, Editor(s)

© SPIE. Terms of Use
Back to Top