Share Email Print
cover

Proceedings Paper

Investigating the effect of crack on propagation of ultrasonic guided waves in pipes via wavelet analysis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ultrasonic guided waves have rapidly become an effective device in the field of NDT in recent years. Main reason for this is the ability of transmission from one point on the pipe to travel a long distance along it length. These waves are typically used in relatively low frequencies, and as a result, die out in longer periods of time. In this study, by designing and building a system to generate the needed signal for the stimulation of guided waves through using a piezoelectric crystal, these waves were generated and transmitted along a pipe. After propagation, waves were relieved by an ultrasonic probe and were saved by a digital oscilloscope. The received waves were then processed and filtered to eliminate noise and compared with each other. In order to compare the results and study the effective parameters of inspecting ability by these waves, the receiving probe was moved along the length of the pipe and through clanging the number of entering sinusoidal pulses along with altering the frequency signal; the data was recorded in the highest amplitude frequency. By adjusting the frequency within 30-40 KHz range, it would be possible to receive signals at any point in the experiment. Although the received signals weaken by further distance, however; through increase in the number of pulses of inlet signals, the guided waves better stimulate and become stronger at the outlet signal.

Paper Details

Date Published: 22 April 2016
PDF: 7 pages
Proc. SPIE 9804, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2016, 98041X (22 April 2016); doi: 10.1117/12.2218328
Show Author Affiliations
Mohammad Riahi, Iran Univ. of Science and Technology (Iran, Islamic Republic of)
Pouya Gholami, Iran Univ. of Science and Technology (Iran, Islamic Republic of)


Published in SPIE Proceedings Vol. 9804:
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2016
Tzuyang Yu; Andrew L. Gyekenyesi; Peter J. Shull; H. Felix Wu, Editor(s)

© SPIE. Terms of Use
Back to Top