Share Email Print

Proceedings Paper

Real-time digital signal processing in multiphoton and time-resolved microscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost ($50--$200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

Paper Details

Date Published: 7 March 2016
PDF: 6 pages
Proc. SPIE 9703, Optical Biopsy XIV: Toward Real-Time Spectroscopic Imaging and Diagnosis, 97030O (7 March 2016); doi: 10.1117/12.2218102
Show Author Affiliations
Jesse W. Wilson, Colorado State Univ. (United States)
Warren S. Warren, Duke Univ. (United States)
Duke Univ. Medical Ctr. (United States)
Martin C. Fischer, Duke Univ. (United States)

Published in SPIE Proceedings Vol. 9703:
Optical Biopsy XIV: Toward Real-Time Spectroscopic Imaging and Diagnosis
Robert R. Alfano; Stavros G. Demos, Editor(s)

© SPIE. Terms of Use
Back to Top