Share Email Print
cover

Proceedings Paper

Nonlinear vibration energy harvesting based on variable double well potential function
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring at the base of the beam. The spring-magnet system on the cantilever beam creates the variable double well potential function. The spring attached to the magnet is in its compressed position when the beam is not deflected, as the beam oscillates, the spring energy gradually releases and further increases the amplitude of vibration. To describe the motion of the cantilever beam, we obtained two coupled partial differential equations by assuming the cantilever beam as Euler-Bernoulli beam considering the effect of the moving magnet. Method of multiple scales is used to solve the coupled equations. The cantilever beam with the two magnets is a bi-stable system. Making one magnet movable can create internal resonance that is explored as a mechanism to increase the frequency bandwidth. The effect of system parameters on the frequency bandwidth of the resonator is investigated through numerical solutions. This study benefits vibration energy harvesting to achieve a higher performance when excited by the wideband ambient vibrations.

Paper Details

Date Published: 15 April 2016
PDF: 10 pages
Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 979902 (15 April 2016); doi: 10.1117/12.2218077
Show Author Affiliations
Wei Yang, Binghamton Univ. (United States)
Shahrzad Towfighian, Binghamton Univ. (United States)


Published in SPIE Proceedings Vol. 9799:
Active and Passive Smart Structures and Integrated Systems 2016
Gyuhae Park, Editor(s)

© SPIE. Terms of Use
Back to Top