Share Email Print

Proceedings Paper

Modeling and simulation of chemically stimulated hydrogel layers using the multifield theory
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Polyelectrolyte hydrogels are ionic gels with viscoelastic properties. They are able to reversibly swell and deswell in response to different external stimuli. In the present work stacked layers of hydrogels - also referred to as hydrogel layers - under chemical stimulation are numerically investigated. For this, a set of coupled partial differential equations describing the chemical, the electrical and the mechanical field is solved by using the finite element method. The swelling behavior of the hydrogel layers - obtained by a novel approach for the osmotic pressure - is in excellent agreement with other investigations available in the literature.

Paper Details

Date Published: 15 April 2016
PDF: 11 pages
Proc. SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, 979810 (15 April 2016); doi: 10.1117/12.2217890
Show Author Affiliations
Martin Sobczyk, TU Dresden (Germany)
Thomas Wallmersperger, TU Dresden (Germany)

Published in SPIE Proceedings Vol. 9798:
Electroactive Polymer Actuators and Devices (EAPAD) 2016
Yoseph Bar-Cohen; Frédéric Vidal, Editor(s)

© SPIE. Terms of Use
Back to Top