Share Email Print

Proceedings Paper

Determining cardiac fiber orientation using FSL and registered ultrasound/DTI volumes
Author(s): James Dormer; Xulei Qin; Ming Shen; Silun Wang; Xiaodong Zhang; Rong Jiang; Mary B. Wagner; Baowei Fei
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Accurate extraction of cardiac fiber orientation from diffusion tensor imaging is important for determining heart structure and function. However, the acquisition of magnetic resonance (MR) diffusion tensor images is costly and time consuming. By comparison, cardiac ultrasound imaging is rapid and relatively inexpensive, but it lacks the capability to directly measure fiber orientations. In order to create a detailed heart model from ultrasound data, a three-dimensional (3D) diffusion tensor imaging (DTI) with known fiber orientations can be registered to an ultrasound volume through a geometric mask. After registration, the cardiac orientations from the template DTI can be mapped to the heart using a deformable transformation field. This process depends heavily on accurate fiber orientation extraction from the DTI. In this study, we use the FMRIB Software Library (FSL) to determine cardiac fiber orientations in diffusion weighted images. For the registration between ultrasound and MRI volumes, we achieved an average Dice similarity coefficient (DSC) of 81.6±2.1%. For the estimation of fiber orientations from the proposed method, we achieved an acute angle error (AAE) of 22.7±3.1° as compared to the direct measurements from DTI. This work provides a new approach to generate cardiac fiber orientation that may be used for many cardiac applications.

Paper Details

Date Published: 1 April 2016
PDF: 7 pages
Proc. SPIE 9790, Medical Imaging 2016: Ultrasonic Imaging and Tomography, 979015 (1 April 2016); doi: 10.1117/12.2217296
Show Author Affiliations
James Dormer, Georgia Institute of Technology (United States)
Xulei Qin, Emory Univ. (United States)
Ming Shen, Emory Univ. (United States)
Silun Wang, Emory Univ. (United States)
Xiaodong Zhang, Emory Univ. (United States)
Rong Jiang, Emory Univ. (United States)
Mary B. Wagner, Emory Univ. (United States)
Baowei Fei, Emory Univ. (United States)
Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 9790:
Medical Imaging 2016: Ultrasonic Imaging and Tomography
Neb Duric; Brecht Heyde, Editor(s)

© SPIE. Terms of Use
Back to Top