Share Email Print
cover

Proceedings Paper

Improving the performance of lesion-based computer-aided detection schemes of breast masses using a case-based adaptive cueing method
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Current commercialized CAD schemes have high false-positive (FP) detection rates and also have high correlations in positive lesion detection with radiologists. Thus, we recently investigated a new approach to improve the efficacy of applying CAD to assist radiologists in reading and interpreting screening mammograms. Namely, we developed a new global feature based CAD approach/scheme that can cue the warning sign on the cases with high risk of being positive. In this study, we investigate the possibility of fusing global feature or case-based scores with the local or lesion-based CAD scores using an adaptive cueing method. We hypothesize that the information from the global feature extraction (features extracted from the whole breast regions) are different from and can provide supplementary information to the locally-extracted features (computed from the segmented lesion regions only). On a large and diverse full-field digital mammography (FFDM) testing dataset with 785 cases (347 negative and 438 cancer cases with masses only), we ran our lesion-based and case-based CAD schemes "as is" on the whole dataset. To assess the supplementary information provided by the global features, we used an adaptive cueing method to adaptively adjust the original CAD-generated detection scores (Sorg) of a detected suspicious mass region based on the computed case-based score (Scase) of the case associated with this detected region. Using the adaptive cueing method, better sensitivity results were obtained at lower FP rates (≤ 1 FP per image). Namely, increases of sensitivities (in the FROC curves) of up to 6.7% and 8.2% were obtained for the ROI and Case-based results, respectively.

Paper Details

Date Published: 24 March 2016
PDF: 7 pages
Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 97851V (24 March 2016); doi: 10.1117/12.2216313
Show Author Affiliations
Maxine Tan, The Univ. of Oklahoma (United States)
Faranak Aghaei, The Univ. of Oklahoma (United States)
Yunzhi Wang, The Univ. of Oklahoma (United States)
Wei Qian, The Univ. of Texas at El Paso (United States)
Bin Zheng, The Univ. of Oklahoma (United States)


Published in SPIE Proceedings Vol. 9785:
Medical Imaging 2016: Computer-Aided Diagnosis
Georgia D. Tourassi; Samuel G. Armato, Editor(s)

© SPIE. Terms of Use
Back to Top