Share Email Print
cover

Proceedings Paper

Rhodopsin molecular contrast imaging by optical coherence tomography for functional assessment of photoreceptors (Conference Presentation)
Author(s): Zahra Nafra; Tan Liu; Shuliang Jiao
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. We developed a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. A broadband supercontinuum laser, whose filtered output was centered at 520 nm, was used as the illuminating light source. To test the capabilities of the system on rhodopsin mapping we imaged the retina of albino rats. The rats were dark adapted before imaging. An integrated near infrared OCT was used to guide the alignment in dark. VIS-OCT three-dimensional images were then acquired under dark- and light- adapted states sequentially. Rhodopsin distribution was calculated from the differential image. The rhodopsin distributions can be displayed in both en face view and depth-resolved cross-sectional image. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

Paper Details

Date Published: 26 April 2016
PDF: 1 pages
Proc. SPIE 9697, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, 969720 (26 April 2016); doi: 10.1117/12.2214561
Show Author Affiliations
Zahra Nafra, Florida International Univ. (United States)
Tan Liu, Florida International Univ. (United States)
Shuliang Jiao, Florida International Univ. (United States)


Published in SPIE Proceedings Vol. 9697:
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX
Joseph A. Izatt; James G. Fujimoto; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top