Share Email Print

Proceedings Paper

Wave interaction in photonic integrated circuits: Hybrid analytical / numerical coupled mode modeling
Author(s): Manfred Hammer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Typical optical integrated circuits combine elements, like straight and curved waveguides, or cavities, the simulation and design of which is well established through numerical eigenproblem-solvers. It remains to predict the interaction of these modes. We address this task by a ”Hybrid” variant (HCMT) of Coupled Mode Theory. Using methods from finite-element numerics, the optical properties of a circuit are approximated by superpositions of eigen-solutions for its constituents, leading to quantitative, low-dimensional, and interpretable models in the frequency domain. Spectral scans are complemented by the direct computation of supermode properties (spectral positions and linewidths, coupling-induced phase shifts). This contribution outlines the theoretical background, and discusses briefly limitations and implementational details, with the help of an example of a 2-D coupled-resonator-optical-waveguide configuration.

Paper Details

Date Published: 1 March 2016
PDF: 8 pages
Proc. SPIE 9750, Integrated Optics: Devices, Materials, and Technologies XX, 975018 (1 March 2016); doi: 10.1117/12.2214331
Show Author Affiliations
Manfred Hammer, Univ. Paderborn (Germany)

Published in SPIE Proceedings Vol. 9750:
Integrated Optics: Devices, Materials, and Technologies XX
Jean-Emmanuel Broquin; Gualtiero Nunzi Conti, Editor(s)

© SPIE. Terms of Use
Back to Top