Share Email Print
cover

Proceedings Paper

Limited-angle multi-energy CT using joint clustering prior and sparsity regularization
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this article, we present an easy-to-implement Multi-energy CT scanning strategy and a corresponding reconstruction method, which facilitate spectral CT imaging by improving the data efficiency the number-of-energy- channel fold without introducing visible limited-angle artifacts caused by reducing projection views. Leveraging the structure coherence at different energies, we first pre-reconstruct a prior structure information image using projection data from all energy channels. Then, we perform a k-means clustering on the prior image to generate a sparse dictionary representation for the image, which severs as a structure information constraint. We com- bine this constraint with conventional compressed sensing method and proposed a new model which we referred as Joint Clustering Prior and Sparsity Regularization (CPSR). CPSR is a convex problem and we solve it by Alternating Direction Method of Multipliers (ADMM). We verify our CPSR reconstruction method with a numerical simulation experiment. A dental phantom with complicate structures of teeth and soft tissues is used. X-ray beams from three spectra of different peak energies (120kVp, 90kVp, 60kVp) irradiate the phantom to form tri-energy projections. Projection data covering only 75◦ from each energy spectrum are collected for reconstruction. Independent reconstruction for each energy will cause severe limited-angle artifacts even with the help of compressed sensing approaches. Our CPSR provides us with images free of the limited-angle artifact. All edge details are well preserved in our experimental study.

Paper Details

Date Published: 22 March 2016
PDF: 10 pages
Proc. SPIE 9783, Medical Imaging 2016: Physics of Medical Imaging, 97830D (22 March 2016); doi: 10.1117/12.2214312
Show Author Affiliations
Huayu Zhang, Tsinghua Univ. (China)
Univ. of Wisconsin-Madison (United States)
Yuxiang Xing, Tsinghua Univ. (China)


Published in SPIE Proceedings Vol. 9783:
Medical Imaging 2016: Physics of Medical Imaging
Despina Kontos; Thomas G. Flohr, Editor(s)

© SPIE. Terms of Use
Back to Top