Share Email Print

Proceedings Paper

Dual-wavelength optical-resolution photoacoustic microscopy for cells with gold nanoparticle bioconjugates in three-dimensional cultures
Author(s): Po-Yi Lee; Wei-Wen Liu; Shu-Ching Chen; Pai-Chi Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Three-dimensional (3D) in vitro models bridge the gap between typical two-dimensional cultures and in vivo conditions. However, conventional optical imaging methods such as confocal microscopy and two-photon microscopy cannot accurately depict cellular processing in 3D models due to limited penetration of photons. We developed a dualwavelength optical-resolution photoacoustic microscopy (OR-PAM), which provides sufficient penetration depth and spatial resolution, for studying CD8+ cytotoxic T lymphocytes (CTLs) trafficking in an in vitro 3D tumor microenvironment. CTLs play a cardinal role in host defense against tumor. Efficient trafficking of CTLs to the tumor microenvironment is a critical step for cancer immunotherapy. For the proposed system, gold nanospheres and indocyanine green (ICG) have been remarkable choices for contrast agents for photoacoustic signals due to their excellent biocompatibility and high optical absorption. With distinct absorption spectrums, targeted cells with gold nanospheres and ICG respectively can be identified by switching 523-nm and 800-nm laser irradiation. Moreover, we use an x–y galvanometer scanner to obtain high scanning rate. In the developed system, lateral and axial resolutions were designed at 1.6 μm and 5 μm, respectively. We successfully showed that dual-spectral OR-PAM can map either the distribution of CTLs with gold nanospheres at a visible wavelength of 523 nm or the 3D structure of tumor spheres with ICG in an in vitro 3D microenvironment. Our OR-PAM can provide better biological relevant information in cellular interaction and is potential for preclinical screening of anti-cancer drugs.

Paper Details

Date Published: 15 March 2016
PDF: 7 pages
Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016, 97081N (15 March 2016); doi: 10.1117/12.2214037
Show Author Affiliations
Po-Yi Lee, National Taiwan Univ. (Taiwan)
Wei-Wen Liu, National Taiwan Univ. (Taiwan)
Shu-Ching Chen, National Taiwan Univ. Hospital (Taiwan)
Pai-Chi Li, National Taiwan Univ. (Taiwan)

Published in SPIE Proceedings Vol. 9708:
Photons Plus Ultrasound: Imaging and Sensing 2016
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top