Share Email Print
cover

Proceedings Paper

Cold hybrid electronics for CIRS-Cassini
Author(s): Robert Picault; Michel Royer; Patrice Vannier; Philippe De Antoni; Jacques Lapegue; Franck Quatrehomme
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Cassini/Huygens is a joint NASA/ESA planetary mission to the Saturnian system. Titan, the largest Saturn moon, is the major target of the mission. Cassini is the Saturn orbiter provided by NASA to be launched on October 1997. To reach planet Saturn in 2004 and to study the rings, the planet and its satellites, the Cassini/Huygens planetary mission, a NASA-JPL project, includes among 12 instruments, the composite infrared spectrometer (CIRS) with GSFC as prime contractor of this instrument. The French participants are the Service d'Astrophysique (SAp) of CEA-Saclay and the DESPA-Observatoire de Meudon. CEA/SAp is in charge of the focal plane 4 electronics (detector, cold preamplifier, and analog processing electronic). SAT has developed under a CEA-SAp contract the hybrid micro-circuit which ensures the preamplifying function. These transimpedance amplifiers operate at 170 K and consist of 10 channels. The input current from the detector is up to 60 nA (mainly background current, modulated by a signal in the pA-nA range) and is converted into voltage up to 1.2 V through a 20 M(Omega) feedback resistor. The noise is < 15 nV/(root)Hz. The stability of the resistors is expected to be 0.1% for a duration of 16 years. The lifetime reuqirement consists of: 1) ground storage: 3-4 years, 2) transfer orbit: 7 years (instrument not operating), 3) Saturnian orbit: 4-5 years (instrument operating) and more than 40 Saturn-centered orbits. The preamplifier hybrid is an operational amplifier using a resistor multichip substrate designed, manufactured, and selected according to ESA PSS and MIL applicable documents. This amplifier integrated circuit has been chosen taking into account its cold temperature electrical performance and on the basis of its radiation resistance to 100 krad (at 170 K and operating). The model philosophy includes 2 main deliveries: engineering models and flight/spare models. The evaluation program consists of the electrical testing of all component parameters at 293 K and 170 K, and lifetime tests (burn-in, thermal cycling). The preamplifier hybrids are mounted in packages, hermetically laser-sealed with dry gas atmosphere.

Paper Details

Date Published: 29 September 1995
PDF: 9 pages
Proc. SPIE 2553, Infrared Spaceborne Remote Sensing III, (29 September 1995); doi: 10.1117/12.221365
Show Author Affiliations
Robert Picault, Societe Anonyme de Telecommunications (France)
Michel Royer, Societe Anonyme de Telecommunications (France)
Patrice Vannier, Societe Anonyme de Telecommunications (France)
Philippe De Antoni, CEA (France)
Jacques Lapegue, CEA (France)
Franck Quatrehomme, CEA (France)


Published in SPIE Proceedings Vol. 2553:
Infrared Spaceborne Remote Sensing III
Marija Strojnik; Bjorn F. Andresen, Editor(s)

© SPIE. Terms of Use
Back to Top