Share Email Print
cover

Proceedings Paper

Near-, middle-, and far-field dipolar interactions in gold nanoparticle arrays
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The resonance wavelength of collective surface plasmon polariton in a chain of 50 nm gold nanoparticles has been calculated and compared to experimental data. The distance between the nanoparticles in a chain was varied from 100 nm to 1000 nm, and the polarization of the incident light was gradually changed from parallel to perpendicular relative to the axis connecting the nanoparticles in the chain. The calculations explicitly included the near-, middle-, and far-field dipole coupling between the nanoparticles. The numerical results matched the experimental data with less than 2% error. Arrays of noble metal nanoparticles are of interest for plasmonics, nanooptics, photovoltaics, and biochemical applications. They are widely used as biosensors and molecular rulers. Over the last decade, interest has turned towards the localized surface plasmon resonance (LSPR) in single-nanoparticle sensors. Benefits of such an approach include simplicity (it does not require momentum-matching geometry), versatility on the nanoscale level, and the possibility of single-molecule detection. While single-nanoparticle sensors offer a better sensitivity down to a single protein-receptor binding, a high degree of sensor miniaturization tends to result in a worse detection limit because of limited surface coverage. A solution to this problem might be the use arrays of nanoplasmonic sensors, each of which is capable of resolving single protein binding events. Present study provides a background for bio-sensing, waveguiding, and molecular ruler applications.

Paper Details

Date Published: 22 April 2016
PDF: 8 pages
Proc. SPIE 9724, Plasmonics in Biology and Medicine XIII, 97240B (22 April 2016); doi: 10.1117/12.2213004
Show Author Affiliations
Vira V. Kravets, Univ. of Colorado at Colorado Springs (United States)
Anatoliy O. Pinchuk, Univ. of Colorado at Colorado Springs (United States)


Published in SPIE Proceedings Vol. 9724:
Plasmonics in Biology and Medicine XIII
Tuan Vo-Dinh; Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top