Share Email Print

Proceedings Paper

Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects
Author(s): Xueding Wang; Guan Xu; Chao Tian; Shanshan Wan; Theodore H. Welling; Anna S. F. Lok; Jonathan M. Rubin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

Paper Details

Date Published: 15 March 2016
PDF: 6 pages
Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016, 97081K (15 March 2016); doi: 10.1117/12.2213001
Show Author Affiliations
Xueding Wang, Tongji Univ. (China)
Univ. of Michigan (United States)
Guan Xu, Univ. of Michigan (United States)
Chao Tian, Univ. of Michigan (United States)
Shanshan Wan, Univ. of Michigan (United States)
Theodore H. Welling, Univ. of Michigan (United States)
Anna S. F. Lok, Univ. of Michigan (United States)
Jonathan M. Rubin, Univ. of Michigan (United States)

Published in SPIE Proceedings Vol. 9708:
Photons Plus Ultrasound: Imaging and Sensing 2016
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top