Share Email Print
cover

Proceedings Paper

Relaxation oscillations in real laser cavity
Author(s): Pawel Szczepanski; Michal Malinowski; Radoslaw Wolski
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An approximate analysis of the relaxation oscillations in Fabry Perot laser cavities is presented. A linear smallsignal perturbation solution of the coupled laser rate equations is generalized by including transverse1 as well longitudinal field dependence2. By the threshold field approximation3 we obtain an expression relating the frequency 0 and damping rate X of the relaxation oscillations to the laser parameters such as steadystate output power P0/Pq normaliezed to the saturation power P distributed losses a L'' poin losses at the mirrors a1 and a arbitrary relectivities o the mirrors r1 and r2 spontaneous liftime ''r of the active medium and geometry o the resonator. 2. THEORY The couppled laser rate equations for single mode can be written in the following form dN I(r) N N dQ I(r) N Q --- ---- (1) dt I ''r #r dt I -r 5 S Q where N denotes the inversion density I (r) describes the total intensity of the nmth laser mode in the cavity I is the saturation in tensity p is the exatation rate Q denotes the number of the photons in the nmth laser mode and ''r is the cavity lifetime. An approximate expressions for the spatial dependence of the electric fields for the forward and backward amplitudes of the nmth laser mode in our approach can be written as R AUR(t) f(x e''TZ S A(r) f(x

Paper Details

Date Published: 1 July 1990
PDF: 2 pages
Proc. SPIE 1319, Optics in Complex Systems, (1 July 1990); doi: 10.1117/12.22129
Show Author Affiliations
Pawel Szczepanski, Technical Univ. of Warsaw (Poland)
Michal Malinowski, Warsaw Univ. of Technology (Poland)
Radoslaw Wolski, Warsaw Univ. of Technology (Poland)


Published in SPIE Proceedings Vol. 1319:
Optics in Complex Systems
F. Lanzl; H.-J. Preuss; G. Weigelt, Editor(s)

© SPIE. Terms of Use
Back to Top