Share Email Print
cover

Proceedings Paper

Lighting up microscopy with random Raman lasing
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Wide-field microscopy, where full images are obtained simultaneously, is limited by the power available from speckle-free light sources. Currently, the vast majority of wide-field microscopes use either mercury arc lamps, or LEDs as the illumination source. The power available from these sources limits wide-field fluorescent microscopy to tens of microseconds temporal resolution. Lasers, while capable of producing high power and short pulses, have high spatial coherence. This leads to the formation of laser speckle that makes such sources unsuitable for wide-field imaging applications. Random Raman lasers offer the best of both worlds by producing laser-like intensities, short, nanosecond-scale, pulses, and low spatial coherence, speckle-free, output. These qualities combine to make random Raman lasers 4 orders of magnitude brighter than traditional wide-field microscopy light sources. Furthermore, the unique properties of random Raman lasers make possible the entirely new possibilities of wide-field fluorescence lifetime imaging or wide-field Raman microscopy. We will introduce the relevant physics that give rise to the unique properties of random Raman lasing, and demonstrate early proof of principle results demonstrating random Raman lasing emission being used as an imaging light source. Finally, we will discuss future directions and elucidate the benefits of using random Raman lasers as a wide-field microscopy light source.

Paper Details

Date Published: 9 March 2016
PDF: 6 pages
Proc. SPIE 9732, Real-time Measurements, Rogue Events, and Emerging Applications, 973208 (9 March 2016); doi: 10.1117/12.2212886
Show Author Affiliations
Brett H. Hokr, Texas A&M Univ. (United States)
Engility (United States)
Dawson T. Nodurft, Texas A&M Univ. (United States)
Jonathan V. Thompson, Texas A&M Univ. (United States)
Joel N. Bixler, Fort Sam Houston (United States)
Gary D. Noojin, Engility (United States)
Brandon Redding, Yale Univ. (United States)
Robert J. Thomas, Fort Sam Houston (United States)
Hui Cao, Yale Univ. (United States)
Benjamin A. Rockwell, Fort Sam Houston (United States)
Marlan O. Scully, Texas A&M Univ. (United States)
Princeton Univ. (United States)
Baylor Univ. (United States)
Vladislav V. Yakovlev, Texas A&M Univ. (United States)


Published in SPIE Proceedings Vol. 9732:
Real-time Measurements, Rogue Events, and Emerging Applications
Bahram Jalali; Sergei K. Turitsyn; Daniel R. Solli; John M. Dudley, Editor(s)

© SPIE. Terms of Use
Back to Top