Share Email Print
cover

Proceedings Paper

Thin metal film-polymer composite for efficient optoacoustic generation (Conference Presentation)
Author(s): Taehwa Lee; L. Jay Guo
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Photoacoustic (PA) conversion of metal film absorbers is known to be inefficient because of their low thermal expansion and high light reflectance, as compared to polymeric materials containing light absorbing fillers. Specifically, the PA signal for metal films is typically an order of magnitude lower than those for PDMS-based composites consisting of carbon materials such as carbon blacks, carbon nanotubes, and carbon fibers. However, the carbon-PDMS composites have several disadvantages, e.g., difficulty in controlling film thickness, aggregation of the carbon fillers, and poor patternablility. To overcome these issues and achieve comparable PA amplitudes, a polymer-metal film composite was developed consisting of a thin metal absorber and adjacent transparent polymer layers. The proposed structure shows efficient PA conversion. The measured PA amplitude of the metal film composite is an order of magnitude higher than that of metal-only samples, and comparable to those of the carbon-PDMS composites. The enhanced PA conversion is accomplished by using metal film of a few tens of nanometers, which greatly facilitates heat transfer from the metal film to the surrounding polymers. Moreover, integrating the metal film composite with a photonic cavity can compensate light absorption loss of the thinner metal film. Theoretical and experimental analysis is conducted for understanding the mechanism behind such improvement. This strategy could be implemented for spatial PA signal patterns, especially for deep tissue PA imaging of implants or image-guiding tools. Furthermore, this approach also provides a guideline for designing photoacoustic transmitters and contrast agents.

Paper Details

Date Published: 27 April 2016
PDF: 1 pages
Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016, 97080Z (27 April 2016); doi: 10.1117/12.2212780
Show Author Affiliations
Taehwa Lee, Univ. of Michigan (United States)
L. Jay Guo, Univ. of Michigan (United States)


Published in SPIE Proceedings Vol. 9708:
Photons Plus Ultrasound: Imaging and Sensing 2016
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top