Share Email Print
cover

Proceedings Paper

The role of optoelectronic feedback on Franz-Keldysh voltage modulation of transistor lasers
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Possessing both the high-speed characteristics of heterojunction bipolar transistors (HBTs) and enhanced radiative recombination of quantum wells (QWs), the light-emitting transistor (LET) which operates in the regime of spontaneous emissions has achieved up to 4.3 GHz modulation bandwidth. A 40 Gbit/s transmission rate can be even achieved using transistor laser (TL). The transistor laser provides not only the current modulation but also direct voltage-controlled modulation scheme of optical signals via Franz-Keldysh (FK) photon-assisted tunneling effect. In this work, the effect of FK absorption on the voltage modulation of TLs is investigated. In order to analyze the dynamics and optical responses of voltage modulation in TLs, the conventional rate equations relevant to diode lasers (DLs) are first modified to include the FK effect intuitively. The theoretical results of direct-current (DC) and small-signal alternating-current (AC) characteristics of optical responses are both investigated. While the DC characteristics look physical, the intrinsic optical response of TLs under the FK voltage modulation shows an AC enhancement with a 20 dB peak, which however is not observed in experiment. A complete model composed of the intrinsic optical transfer function and an electrical transfer function fed back by optical responses is proposed to explain the behaviors of voltage modulation in TLs. The abnormal AC peak disappears through this optoelectronic feedback. With the electrical response along with FK-included photon-carrier rate equations taken into account, the complete voltage-controlled optical modulation response of TLs is demonstrated.

Paper Details

Date Published: 4 March 2016
PDF: 7 pages
Proc. SPIE 9742, Physics and Simulation of Optoelectronic Devices XXIV, 974214 (4 March 2016); doi: 10.1117/12.2212530
Show Author Affiliations
Chi-Hsiang Chang, National Taiwan Univ. (Taiwan)
Shu-Wei Chang, Academia Sinica (Taiwan)
National Chiao-Tung Univ. (Taiwan)
Chao-Hsin Wu, National Taiwan Univ. (Taiwan)


Published in SPIE Proceedings Vol. 9742:
Physics and Simulation of Optoelectronic Devices XXIV
Bernd Witzigmann; Marek Osiński; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top